PENGARUH INDUKSI BAKTERI Pseudomonas aeruginosa TERHADAP HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS (HUVECs) CULTURE

THE INFLUENCE OF *Pseudomonas aeruginosa* INDUCTION TO THE HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS (HUVECs) CULTURE

Dwi Yuni Nur Hidayati

Fakultas Kedokteran, Universitas Brawijaya Jl. Veteran, Malang 65145 Telp. 0341-560491

Abstract

One of the cause of negative gram bacteria is *Pseudomonas aeruginosa* (*Ps. aeruginosa*). It continuing become sepsis on the first step of patogenesa happen sticking between aeruginosa with endhotel cell. This sticking is mediated by adhesi molecul which have characterize same with hemaglutin protein. The main study of this research is to know the profile of endothelial cell culture within induction of *Ps. aeruginosa*. The methods are *Ps. aeruginosa* (9064) which have been isolated then processes on TCBS Media and continued with isolation terracely. The profile of weight molecule protein obtained by SDS PAGE and then conducted electroelution. The test of hemaglutinin using eritrosit mencit. The receptor cell used is endhotel cell (HUVECs) culture. The result show that dosage of hemaglutin protein of Aeruginosa bring effect to profile of HUVECs culture determined by index adhesion of *Ps. aeruginosa* to HUVECs culture. We conclude that protein 38,19 kDa give effect to profile of HUVECs culture in vitro.

Key words: *Pseudomonas aeruginosa*, adhesion protein, HUVECs

Pendahuluan

Tingginya kejadian dan problema penyakit infeksi yang biasanya dan selalu dikaitkan dengan keadaan negara berkembang atau higienis kurang, ternyata tidak seluruhnya benar. Di negara maju pun kini sangat direpotkan oleh penyakit infeksi. Di Amerika Serikat, kematian akibat sepsis tiap tahunnya mencapai 70.000 orang. Sekitar 50-60% sepsis disebabkan oleh bakteriemi Gram-negatif. Penyebab Gram-negatif bakteriemia paling sering terjadi adalah famili Enterobacteriaceae dan Pseudomonaceae, yang terdiri Escherichia coli (35%),Klebsiella. Enterobacter, (38%), dan Proteus Pseudomonas aeruginosa (12%) (Virella, 1997).

Pseudomonas aeruginosa (Ps. aeruginosa) adalah bakteri Gram negatif berbentuk batang, bergerak dengan flagela dan bersifat aerob. Bakteri ini banyak menginfeksi penderita di rumah sakit dengan predisposisi tertentu. Ps. aeruginosa mempunyai pili type IV yang berfungsi sebagai adhesin untuk mengikat sel host. Ps. aeruginosa dapat melakukan adhesi dan kolonisasi pada bermacam—macam type sel dari epitel sel buccal, paru, ginjal dan sel endothel (Comolli, 1999).

Penemuan bahwa adhesi merupakan tahap awal proses infeksi pada kebanyakan bakteri, menunjukkan bahwa protein adhesin tersebut sangat mungkin digunakan sebagai komponen vaksin yang baik. Sebagai contoh Fim H vaccine yang sedang dikembangkan untuk mencegah infeksi saluran kemih yang disebabkan *E.coli* (Wizzeman, 2000).

Pada kultur sel endotel secara in vitro yang disalutkan bakteri tertentu dimaksudkan untuk menjenuhi reseptor yang terlibat dari proses perlekatan diharapkan dapt menjelaskan sebagian patogenesa Ps. aeruginosa pada sel host dengan melihat profile perlekatannya (Wizzeman, 2000).

Penelitian ini mengarah pada profile kultur endotel yang diinduksi Ps. aeruginosa untuk menjelaskan faktor virulensi yang berpengaruh pada proses adhesi dengan sel endotel HUVECs sebagai tempat pelekatan bakteri *Ps.aeruginosa* yang diharapkan dapat memberikan informasi yang menarik untuk dikaji lebih lanjut.

Materi dan Metode Penelitian

Endotel HUVECs dikultur dalam media DMEM 199, glutamin, penicilin G, gentamicyne, NaHCO₃, Penol red, HCl 1 N dan NaOH untuk mengukur pH hingga 7,4. Sediaan

bakteri P. aeruginosa dalam kultur pada BHI (Brain Heart Infusion) dan media pada TCBS.

Isolat *Ps. aeruginosa* berasal dari koleksi sepuluh spesimen yang ada di Laboratorium Mikrobiologi RSSA Malang. Kemudian dilakukan identifikasi spesies dengan mengggunakan standard baku dari kit Microbact sistem.

Metode Kultur Pseudomonas aeruginosa

Bakteri yang digunakan adalah koleksi yang ada di Laboratorium Mikrobiologi Rumah sakit Saiful Anwar.Media yang digunakan menurut petunjuk Ehara (1992) yaitu TCG yang memperkaya pertumbuhan pili Ps. aeruginosa. Media ini mengandung 0,02% thioproline, 0,3% NaHCO3, 0,1 % mono sodium 1glutamat, 1% bactotryptone, 0,2% yeast extract, 0,5% NaCl, 2% bacto agar dan 1 mM EGTA. Media agar dibuat dalam botol isinya 250 ml secara miring sebanyak 50 botol, setiap botol berisi 50 ml agar. Pseudomonas aeruginosa yang dipilih ditanam pada media media Brain Heart Infusion Broth (BHI), kemudian selama dikocok kuat selama 30 menit pada pemanas air suhu 37^oC. Kemudian suspensi bakteri sebanyak 10ml dimasukkan dalam setiap botol yang mengandung media TCG. Selanjutnya dilakukan pengeraman suhu 37°C selama 2 X 24 jam.

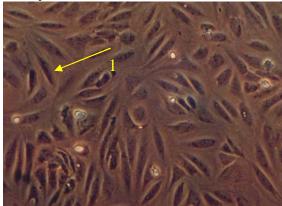
Sodium Dodecyl Sulfate Polyacrylamid Gel Electrophoresis (SDS-PAGE)

Monitoring bobot molekul dikerjakan menggunakan SDS-PAGE metode Laemmli (1970). Sampel protein dipanaskan 100°C selama 5 menit dalam larutan penyangga yang mengandung 5 mM Tris HCl pH 6,8, 2-mercapto ethanol 5%, w/v sodium dodecyl sulfate 2,5%, v/v glyserol 10% dengan warna pelacak bromophenol blue. Dipilih 12,5% mini slab gel dengan tracking gel4%. Voltase yang digunakan 125 mV. Sebagai bahan warna adalah coomassie brilliant blue dan molekul standar sigma low range marker.

Isolasi dan pembuatan kultur sel endotel

Semua bahan yang akan digunakan dihangatkan hingga 37°C. Umbilikus dibersihkan dari jaringan dan clot yang ada dengan tissue. Masing-masing ujung umbilikus dipotong transversal sehingga terlihat dua arteri dan vena. Vena akan terlihat mempunyai dinding yang lebih tebal, lebih besar dan lentur. Masukkan kanul pada satu ujung vena (~klem) kemudian ikat dengan erat. Bersihkan vena dengan "PBS A" melalui kanul yang telah terpasang dengan menggunakan spuit 20 cm. Setelah bersih, ikat

ujung umbilikus yang tidak berkanul dengan ikatan yang kuat. Masukkan kolagenase ke dalam vena seperti pada cara 5 dan biarkan spuit masih terpasang pada kanul, kemudian umbilikus sidekap dengan tangan (agar mencapai ~37°C) selama 8 menit. Keluarkan kolagenase yang telah mengandung sel endotel dengan cara menyedot spuit yang masih terpasang. Dan larutan kolagenase tersebut ditaruh pada tabung sentrifuse yang steril. Ulangi cara seperti pemberian kolagenase (cara 6) tetapi dengan menggunakan PBS A sebanyak 8 ml. Kemudian sedot kembali seperti pada cara 7 dan taruhkan pada tabung sentrifuse yang telah berisi dengan kolagenase. Larutan yang telah mengandung sel endotel tersebut disentrifuse dengan kecepatan 1300 rpm selama 8 menit, ulangi sentrifuse satu kali lagi dengan menambahkan media sebanyak 2 ml dalam tabung sentrifuse, putar 1300 rpm selama 8 menit. Tuangkan supernatan, sedangkan pellet yang ada diresuspensi dengan medium kultur sebanyak 4 ml. Transfer larutan tersebut pada flask 25 cm² dan masuk ke dalam inkubator (5% O dan 95% CO₂). Pada hati berikutnya medium diambil dan dicuci dengan menggunakan serum free medium, kemudian kembali diisi medium kultur (4 ml). Setiap 2 hari sekali setengah dari medium diambil dan diganti dengan yang baru. Sel endotel akan berbentuk sebagai monolayer pada hari ke-3.


Metode Uii Adesi.

Uji adesi modifikasi Nagayama et al, 1995 dimana untuk tes adesi bakteri Ps.aeruginosa yang dibiakkan dalam lactose-broth pada suhu 37°C. Biakan cair disentrifugasi 6.000 rpm selama 10 menit pada suhu 4⁰C. Endapan disuspensikan dengan PBS yang mengandung BSA 1 % kandungan bakteri dibuat sekitar 10⁸/ml dengan menggunakan spektrofotometer dengan panjang gelombang 600nm. Suspensi bakteri diambil sebanyak 100 µl dan dimasukkan dalam well yang didalamnya terdapat cover slip berisi endotel. Well dimasukkan dalam shaking inkubator goyangan 60 kali per menit, 30 menit, suhu 37°C, kemudian cover slip dalam well dicuci 3 kali dengan PBS steril (calcium free). Cover slip diwarnai dengan kristal violet selama 1', bilas dengan air, cuci dengan lugol selama 1', bilas dengan air, cuci dengan aseton alkohol 96% 1'. bilas dengan air dan terakhir dicuci dengan safranin. Kemudian setelah dibilas bersih dengan air, cover slip dikering anginkan diatas tissue dan dilakukan pengamatan terhadap model adesi Ps. aeruginosa pada endotel dan model struktur endotel. Kemudian diamati

dibawah mikroskop dengan pembesaran 200, 400, dan 1000 X, dan dilakukan perhitungan indeks adesi yaitu jumlah rata-rata bakteri yang menempel per 100 sel endotel.

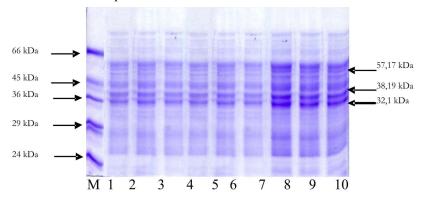
Hasil dan Pembahasan

Gambaran dari kultur endotel normal dapat dilihat pada Gambar 1.

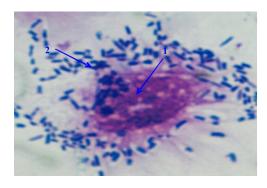
Gambar 1. Kultur sel endotel normal hari ke 5 Keterangan: 1. Sel endotel, bentuk pipih, permukaan mulus

Berdasarkan hasilisolasi protein dari

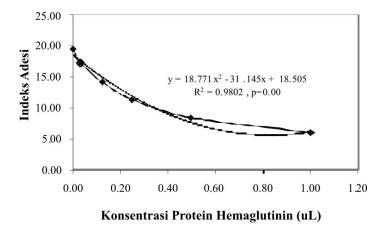
sampel bakteri *Ps.aeruginosa* yang telah diisolasi dan dilakukan SDS-PAGE diperoleh Bobot molekul (BM) protein dengan hasil seperti pada Gambar 2.


Profil protein pada SDS-PAGE dari beberapa potongan pili *Ps aeruginosa* tampak pada gambaran potongan pili ketiga dengan gambaran pita protein yang menonjol. Gambaran pita protein yang paling menonjol yaitu 57,17 kDa; 38,19 kDa dan 32,1 kDa.. Gambaran ketiga protein yang menonjol tersebut dipotong untuk dikoleksi, selanjutnya dilakukan pemurnian dengan elektroelusi sehingga didapatkan protein larutan.

Uji Adesi (Metode Nagayama)


Hasil Uji adesi *Ps.aeruginosa* pada sel endotel (HUVECs) tampak seperti pada Gambar 3.

Berdasarkan hasil analisis varian satu jalur tampak bahwa dosis pengenceran protein Ps. aeruginosa berpengaruh sangat nyata terhadap indeks adhesi *Ps.aeruginosa* pada sel endotel (HUVECs) dengan signifikasi F hitung(p) = 0,00 dan tingkat kepercayaan 95%.


Perhitungan Indeks adesi pada tabel diatas

Gambar 2. Hasil SDS-PAGE Protein Ps. aeruginosa

Gambar 3. Gambaran Adesi bakteri *Pseudomonas aeruginosa* pada sel endotel dengan pembesaran 1000x dengan Perlakuan Kontrol, Sediaan diwarnai Giemsa Keterangan: 1. sel endotel (HUVECs), 2. Bakteri (*Ps. aeruginosa*)

Gambar 4. Scatter plot yang menunjukkan hubungan antara indeks adhesi *Ps. aeruginosa* dan konsentrasi protein *Ps. aeruginosa* 38,19 kDa

menunjukkan kecenderungan semakin tinggi protein hemagglutinin yang disalutkan, maka semakin sedikit bakteri yangmelekat pada sel endotel (HUVECs), seperti pada Gambar 4.

Beberapa isolat Ps. aeruginosa yang diperoleh dari RSSA Malang ternyata setelah dilakukan uji hemaglutinin menggunakan eritrosit mencit menunjukkan bahwa isolat Ps 9064 menunjukkan titer tertinggi pada pengenceran 0,0625 atau 1:64. Hasil fraksinasi protein Ps aeruginosa yang telah dilakukan dengan elektroforesis SDS Page untuk menentukan bobot molekul 57,17 kDa; 38,19kDa; 32 kDa. Bobot molekul tersebut selanjutnya dielektroelusi untuk mendapatkan protein larutan yang kemudian dilanjutkan dengan uji hemaglutinasi. Pada saat interaksi dengan lingkungan ekstraseluler, bakteri gram negatif menggunakan faktor virulrensi termasuk toksin ekstraseluler, pili, curli, autotransporter, dan crystalin S-layers (Stathopoulos et al, 2000). Hal ini membuktikan Ps.aeruginosa mempunyai protein dengan berat 38,19 kDa yang mampu memberikan pengaruh nyata terhadap profile perlekatan Ps. aeruginosa pada sel endotel HUVECs.

Adesi Ps. aeruginosa pada sel endotel HUVECs diantaranya ditentukan oleh faktor berupa pili. Penelitian viruleni menyebutkan bahwa bahwa Ps.aeruginosa juga mengaktivasi sel Mast manusia untuk menginduksi migrasi neutrophil transendothelial melalui sel M yang berasal dari IL-1alfa dan beta 1 (Jun et al., 2002). Pada sel endothel HUVECs apakah mekanisme adhesi ini juga dibutuhkan Ps. aeruginosa untuk menginfeksi endothel, masih diperlukan

penelitian lebih jauh lagi. Diduga bahwa adhesi *Ps. aeruginosa* terhadap endothel ditentukan oleh sekresi protein dengan *general secretory pathway* (GSP) yang merupakan dua bagian proses yang membutuhkan *Sec translocase* didalam inner membrane dan suatu substrat pemisah-sekresi spesifik apparatus selama sekresi menyeberangi outer membran. Salah satunya yang termasuk dalam GSP ini sebagai faktor virulensi untuk berinteraksi dan komunikasi dengan host adalah pili (Stathopoulos *et al.*, 2000 dan Salyers, 1994).

Comer et al (2002) menjelaskan bahwa Ps. aeruginosa strain 1244 mempunyai pilin glycan yang berikatan secara kovalen terhadap residu serine. Hasil sequensing N-terminal dari fraksi pilin dihasilkan dari perlakuan endopeptidase dan diidentifikasi dengan reaksi monoklonal antibodi spesifik glycan yang terindikasi bahwa glycan ada diantara residu 75 dan terminus pilin karboksil. Bagian karboksil-proksimal pada pilin disulfida loop, yang di ukur pada pilin glycan, merupakan epitop sel B linear utama, ini sebagai epitop peptida.

Hasil penelitian menunjukkan bahwa bobot molekul potongan pili ketiga adalah 38,19 kDa. Seperti dijelaskan oleh peneliti terdahulu bahwa pili *Ps.aeruginosa* merupakan pili sub unit monomerik akan tetapi bobot molekulnya adalah 15 kDa- 17kDa, setelah ditentukan ternyata gene penyandinya adalah *PilO*. Diduga bahwa dari penelitian bobot molekul 38,19 kDa merupakan bobot molekul sub unit monomerik dengan jenis gene penyandi yang berbeda, sehingga untuk menentukan apakah bobot molekul tersebut merupakan monomer atau dimer sehinggan

diperlukan penelitian lebih lanjut tentang jenis protein dan analisis gene penyandi protein *Ps. aeruginosa.*

Castric et.al (2001) juga menjelaskan bahwa pili Ps. Aeruginosa merupakan pili somatik, filament protein yang meluas seperti benang dari satu atau kedua sel poles, yang merupakan faktor virulensi utama, memicu adherensi pada sel host dan proses invasi pada sel host. Berat molekul protein pili ini berkisar antara 16 kDa. Bentuk mature dari protein ini dihasilkan oleh pergerakan dari suatu sixresidue leader sequense sebuah proses yang diatur oleh metilasi pada nascent aminoterminal phenylalanine. Determinasi proses ini tergantung jenis gene penyadi pilO, yaitu sebuah gene yang terltakpada bagian operon yang juga mengandung pilin struktural gene pilA.. Bobot molekul kisaran 16 kDa diketahui sebagai bobot molekul penentu patogen opportunistik pada bakteri gram negatif Ps.aeruginosa. Berdasarkan kajian literatur tersebut perlu ditentukan apakah bobot molekul protein dari hasil penelitian potongan pili ketiga 38,19 kDa isolat Ps 9064 juga merupakan patogen oppurtunistik terhadap sel host khususnya sel endotel HUVECs.

Mekanisme invasi *Ps. aeruginosa* whole cell pada sel endotel HUVECs normal berdasarkan hasil penelitian menunjukkan bahwa struktur morfologi sel endotel kultur yang dengan pewarnaan wright dan pengamatan dengan mikroskop merk Nikon menunjukkan bentuk sel pipih, dengan struktur sitoplasma dan inti sel masih jelas, dan secara morfologis belum menunjukkan adanya perubahan morfologis secara nyata.

Gambaran adesi bakteri Ps. aeruginosa menunjukkan pola aggregat dan ada pula yang berpola diffuse atau menyebar pada permukaan sel endotel. Kultur sel endotel yang diperlakukan dengan adesi Ps. aeruginosa dan disalut dengan protein pili hemaglutinin pada potongan pili ketiga dengan bobot molekul 38,19 kDa dengan berbagai pengenceran dosis menunjukkan bahwa semakin besar dosis protein hemaglutinin yang disalut pada sel endotel kultur menunjukkan adanya tingkat penghambatan adesi yang semakin besar, sehingga semakin besar pengenceran yang diberikan memberikan gambaran adesi yang jauh lebih besar dibandingkan dosis pemberian protein hemaglutinin tanpa pengenceran. Berdasarkan scatter plot dengan perlakuan protein hemaglutinin Ps. aeruginosa bahwa besar menunjukkan semakin pengenceran maka adesi bakteri tersebut menunjukkan peningkatan secara signifikan

dengan nilai *regresi* (r) = 0,98 dan *p value* = 0,00. Hal ini diduga bahwa berdasarkan hasil regresi menggambarkan bahwa terdapat hubungan yang signifikan antara protein dengan bobot molekul 38,19 kDa dan adesi *Ps. aeruginosa* pada sel endotel kultur normal.

Kesimpulan

Protein bakteri *Ps. aeruginosa* 9064 dengan bobot molekul 38,19 kDa, yang merupakan protein adesi setelah protein tersebut disalutkan pada sel endotel (HUVECs) memberikan profile adesi pada sel endotel HUVECs.

Daftar Pustaka

- Castric Peter, Cassels Frederick J.,Carlson Russel W, 2001, Sructural Charcterization of the *Pseudomonas* aeruginosa 1244 Pilin Glycan, Journal of Biological Chemistry, 270 (28) p 26479 - 26485
- Comer Jason E,Marshal Mark A, Blanch Vincent J, Deal Carolyn D., 2002, Identifification of the *Pseudomonas* aeruginosa 1244 Pilin glycosylation Site, Infection and Immunity, 70 (6) p 2837 - 2845
- Comolli Janes C., Waite Leslie L., Mostov Keith E., Engel Joanne N., 1999, Pili Bending to Asialo – GM I on Epithelial Cells Can Mediate Cytotoxicity or Bacterial Internalisation by Pseudomonas aeruginosa, Infection and Imunity 67 (7) p 3207 – 3214
- Nagayama, K., Oguchi, T., Arita, M., Honda, T., 1995, Purification and Characterization of A Cell Associated Haemagglutinin of *Vibrio parahaemolyticus*, Infec.and Immun 63 (5): 1987 1992
- Salyers Abigail A., Whitt Dixie D., 1994.

 Bacterial Pathogenesis. Washington DC: ASM Press, p.31 -35; 262
- Stathopoulos Christos, Hendrixson David R.
 Thanassi David G., Hultgreen Scott
 J.,2000, Secretion of Virulence
 determinants by the general secretory
 pathway in Gram negative pathogens
 : an evolving story, Microbes and
 infection,2, p 1061 1072

- Virella Gabriel, 1997. Gram negative Rods III : Opportunistic and Zoonotic Bacteri; Microbiology and infectious disease 3 rd edition, Philadelpia: Williams & Willins awaverly Company,p.159 – 162
- Wizzemann, T.M., Adamoum J.E.,and Langermann, S., 1999, Adhesins as Targets for Vaccine Development, Centers for Disease Control and Prevevtion, USA, p.1-5